Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 180: 279-294, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604466

RESUMEN

The myotendinous junction (MTJ) is a vulnerable region at the interface of skeletal muscle and tendon that forms an integrated mechanical unit. This study presents a technique for the spatially restrictive co-culture of human embryonic stem cell (hESC)-derived skeletal myocytes and primary tenocytes for two-dimensional modeling of the MTJ. Micropatterned lanes of extracellular matrix and a 2-well culture chamber define the initial regions of occupation. On day 1, both lines occupy less than 20 % of the initially vacant interstitial zone, referred to henceforth as the junction. Myocyte-tenocyte interdigitations are observed by day 7. Immunocytochemistry reveals enhanced organization and alignment of patterned myocyte and tenocyte features, as well as differential expression of multiple MTJ markers. On day 24, electrically stimulated junction myocytes demonstrate negative contractile strains, while positive tensile strains are exhibited by mechanically passive tenocytes at the junction. Unpatterned tenocytes distal to the junction experience significantly decreased strains in comparison to cells at the interface. Unpatterned myocytes have impaired organization and uncoordinated contractile behavior. These findings suggest that this platform is capable of inducing myocyte-tenocyte junction formation and mechanical coupling similar to the native MTJ, showing transduction of force across the cell-cell interface. STATEMENT OF SIGNIFICANCE: The myotendinous junction (MTJ) is an integrated structure that transduces force across the muscle-tendon boundary, making the region vulnerable to strain injury. Despite the clinical relevance, previous in vitro models of the MTJ lack the structure and mechanical accuracy of the native tissue and have difficulty transmitting force across the cell-cell interface. This study demonstrates an in vitro model of the MTJ, using spatially restrictive cues to inform human myocyte-tenocyte interactions and architecture. The model expressed MTJ markers and developed anisotropic myocyte-tenocyte integrations that resemble the native tissue and allow for force transduction from contracting myocytes to passive tenocyte regions. As such, this study presents a system capable of investigating development, injury, and pathology in the human MTJ.


Asunto(s)
Tendones , Tenocitos , Ingeniería de Tejidos , Humanos , Tendones/citología , Tendones/fisiología , Ingeniería de Tejidos/métodos , Tenocitos/citología , Tenocitos/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Modelos Biológicos , Técnicas de Cocultivo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Unión Miotendinosa
2.
Sci Rep ; 14(1): 9495, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664570

RESUMEN

The biological mechanisms regulating tenocyte differentiation and morphological maturation have not been well-established, partly due to the lack of reliable in vitro systems that produce highly aligned collagenous tissues. In this study, we developed a scaffold-free, three-dimensional (3D) tendon culture system using mouse tendon cells in a differentially adherent growth channel. Transforming Growth Factor-ß (TGFß) signaling is involved in various biological processes in the tendon, regulating tendon cell fate, recruitment and maintenance of tenocytes, and matrix organization. This known function of TGFß signaling in tendon prompted us to utilize TGFß1 to induce tendon-like structures in 3D tendon constructs. TGFß1 treatment promoted a tendon-like structure in the peripheral layer of the constructs characterized by increased thickness with a gradual decrease in cell density and highly aligned collagen matrix. TGFß1 also enhanced cell proliferation, matrix production, and morphological maturation of cells in the peripheral layer compared to vehicle treatment. TGFß1 treatment also induced early tenogenic differentiation and resulted in sufficient mechanical integrity, allowing biomechanical testing. The current study suggests that this scaffold-free 3D tendon cell culture system could be an in vitro platform to investigate underlying biological mechanisms that regulate tenogenic cell differentiation and matrix organization.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Tendones , Tenocitos , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Tendones/citología , Tendones/metabolismo , Ratones , Diferenciación Celular/efectos de los fármacos , Tenocitos/metabolismo , Tenocitos/citología , Proliferación Celular/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Células Cultivadas , Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Ingeniería de Tejidos/métodos
3.
Cell Rep ; 43(4): 114049, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573853

RESUMEN

Heterotopic ossification (HO) is a challenging condition that occurs after musculoskeletal injury and is characterized by the formation of bone in non-skeletal tissues. While the effect of HO on blood vessels is well established, little is known about its impact on lymphatic vessels. Here, we use a mouse model of traumatic HO to investigate the relationship between HO and lymphatic vessels. We show that injury triggers lymphangiogenesis at the injury site, which is associated with elevated vascular endothelial growth factor C (VEGF-C) levels. Through single-cell transcriptomic analyses, we identify mesenchymal progenitor cells and tenocytes as sources of Vegfc. We demonstrate by lineage tracing that Vegfc-expressing cells undergo osteochondral differentiation and contribute to the formation of HO. Last, we show that Vegfc haploinsufficiency results in a nearly 50% reduction in lymphangiogenesis and HO formation. These findings shed light on the complex mechanisms underlying HO formation and its impact on lymphatic vessels.


Asunto(s)
Linfangiogénesis , Células Madre Mesenquimatosas , Osificación Heterotópica , Factor C de Crecimiento Endotelial Vascular , Animales , Osificación Heterotópica/metabolismo , Osificación Heterotópica/patología , Osificación Heterotópica/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Ratones , Células Madre Mesenquimatosas/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Diferenciación Celular , Tenocitos/metabolismo , Osteogénesis , Haploinsuficiencia , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino
4.
J Biomech Eng ; 146(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38529730

RESUMEN

Tendinopathy is a leading cause of mobility issues. Currently, the cell-matrix interactions involved in the development of tendinopathy are not fully understood. In vitro tendon models provide a unique tool for addressing this knowledge gap as they permit fine control over biochemical, micromechanical, and structural aspects of the local environment to explore cell-matrix interactions. In this study, direct-write, near-field electrospinning of gelatin solution was implemented to fabricate micron-scale fibrous scaffolds that mimic native collagen fiber size and orientation. The stiffness of these fibrous scaffolds was found to be controllable between 1 MPa and 8 MPa using different crosslinking methods (EDC, DHT, DHT+EDC) or through altering the duration of crosslinking with EDC (1 h to 24 h). EDC crosslinking provided the greatest fiber stability, surviving up to 3 weeks in vitro. Differences in stiffness resulted in phenotypic changes for equine tenocytes with low stiffness fibers (∼1 MPa) promoting an elongated nuclear aspect ratio while those on high stiffness fibers (∼8 MPa) were rounded. High stiffness fibers resulted in the upregulation of matrix metalloproteinase (MMPs) and proteoglycans (possible indicators for tendinopathy) relative to low stiffness fibers. These results demonstrate the feasibility of direct-written gelatin scaffolds as tendon in vitro models and provide evidence that matrix mechanical properties may be crucial factors in cell-matrix interactions during tendinopathy formation.


Asunto(s)
Gelatina , Tenocitos , Andamios del Tejido , Gelatina/química , Animales , Caballos , Tenocitos/citología , Tenocitos/metabolismo , Andamios del Tejido/química , Fenómenos Mecánicos , Regulación de la Expresión Génica , Forma de la Célula , Fenómenos Biomecánicos
5.
Stem Cell Rev Rep ; 20(4): 1040-1059, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38396222

RESUMEN

Tissue fibrosis following tendon injury is a major clinical problem due to the increased risk of re-injury and limited treatment options; however, its mechanism remains unclear. Evidence suggests that insufficient resolution of inflammation contributes to fibrotic healing by disrupting tenocyte activity, with the NF-κB pathway being identified as a potential mediator. Equine embryonic stem cell (ESC) derived tenocytes may offer a potential cell-based therapy to improve tendon regeneration, but how they respond to an inflammatory environment is largely unknown. Our findings reveal for the first time that, unlike adult tenocytes, ESC-tenocytes are unaffected by IFN-γ, TNFα, and IL-1ß stimulation; producing minimal changes to tendon-associated gene expression and generating 3-D collagen gel constructs indistinguishable from unstimulated controls. Inflammatory pathway analysis found these inflammatory cytokines failed to activate NF-κB in the ESC-tenocytes. However, NF-κB could be activated to induce changes in gene expression following stimulation with NF-κB pharmaceutical activators. Transcriptomic analysis revealed differences between cytokine and NF-κB signalling components between adult and ESC-tenocytes, which may contribute to the mechanism by which ESC-tenocytes escape inflammatory stimuli. Further investigation of these molecular mechanisms will help guide novel therapies to reduce fibrosis and encourage superior tendon healing.


Asunto(s)
Citocinas , Células Madre Embrionarias , FN-kappa B , Tenocitos , Animales , Caballos , Tenocitos/citología , Tenocitos/metabolismo , Tenocitos/efectos de los fármacos , Citocinas/metabolismo , FN-kappa B/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inflamación/patología , Inflamación/metabolismo , Células Cultivadas , Tendones/citología
6.
Aging (Albany NY) ; 16(3): 2702-2714, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38309291

RESUMEN

OBJECTIVE: Tendinopathy is influenced by multiple factors, including chronic inflammation and aging. Senescent cells exhibit characteristics such as the secretion of matrix-degrading enzymes and pro-inflammatory cytokines, collectively known as senescence-associated secretory phenotypes (SASPs). Many of these SASP cytokines and enzymes are implicated in the pathogenesis of tendinopathy. MicroRNA-146a (miR-146a) blocks senescence by targeting interleukin-1ß (IL-1ß) receptor-associated kinase 4 (IRAK-4) and TNF receptor-associated factor 6 (TRAF6), thus inhibiting NF-κB activity. The aims of this study were to (1) investigate miR-146a expression in tendinopathic tendons and (2) evaluate the role of miR-146a in countering senescence and SASPs in tendinopathic tenocytes. METHODS: MiR-146a expression was assessed in human long head biceps (LHB) and rat tendinopathic tendons by in situ hybridization. MiR-146a over-expression in rat primary tendinopathic tenocytes was achieved by lentiviral vector-mediated precursor miR-146a transfer (LVmiR-146a). Expression of various senescence-related markers was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunoblotting and immunofluorescence. MiR-146a expression showed a negative correlation with the severity of tendinopathy in human and rat tendinopathic tendons (p<0.001). RESULTS: Tendinopathic tenocyte transfectants overexpressing miR-146a exhibited downregulation of various senescence and SASP markers, as well as the target molecules IRAK-4 and TRAF6, and the inflammatory mediator phospho-NF-κB. Additionally, these cells showed enhanced nuclear staining of high mobility group box 1 (HMGB1) compared to LVmiR-scramble-transduced controls in response to IL-1ß stimulation. CONCLUSIONS: We demonstrate that miR-146a expression is negatively correlated with the progression of tendinopathy. Moreover, its overexpression protects tendinopathic tenocytes from SASPs and senescence through the IRAK-4/TRAF6/NF-kB pathway.


Asunto(s)
MicroARNs , Tendinopatía , Animales , Humanos , Ratas , Citocinas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fenotipo Secretor Asociado a la Senescencia , Tendinopatía/genética , Tenocitos/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo
7.
J Orthop Res ; 42(5): 985-992, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38044475

RESUMEN

Lidocaine is the most frequently applied local infiltration anesthetic agent for treating tendinopathies. However, studies have discovered lidocaine to negatively affect tendon healing. In the current study, the molecular mechanisms and effects of lidocaine on tenocyte migration were evaluated. We treated tenocytes intrinsic to the Achilles tendons of Sprague-Dawley rats with lidocaine. The migration ability of cells was analyzed using electric cell-substrate impedance sensing (ECIS) and scratch wound assay. We then used a microscope to evaluate the cell spread. We assessed filamentous actin (F-actin) cytoskeleton formation through immunofluorescence staining. In addition, we used Western blot analysis to analyze the expression of phospho-focal adhesion kinase (FAK), FAK, phospho-paxillin, paxillin, and F-actin. We discovered that lidocaine had an inhibitory effect on the migration of tenocytes in the scratch wound assay and on the ECIS chip. Lidocaine treatment suppressed cell spreading and changed the cell morphology and F-actin distribution. Lidocaine reduced F-actin formation in the tenocyte during cell spreading; furthermore, it inhibited phospho-FAK, F-actin, and phospho-paxillin expression in the tenocytes. Our study revealed that lidocaine inhibits the spread and migration of tenocytes. The molecular mechanism potentially underlying this effect is downregulation of F-actin, phospho-FAK, and phospho-paxillin expression when cells are treated with lidocaine.


Asunto(s)
Tendón Calcáneo , Actinas , Ratas , Animales , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Paxillin/metabolismo , Paxillin/farmacología , Actinas/metabolismo , Fosforilación , Tenocitos/metabolismo , Lidocaína/farmacología , Movimiento Celular , Ratas Sprague-Dawley , Adhesión Celular
8.
Tissue Cell ; 86: 102275, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37979397

RESUMEN

The prevalence of tendinopathy in patients with diabetes is well documented. Despite efforts to improve diabetes management, there is a lack of research on therapeutic agents targeting the core features of tendinopathy, namely, tenocyte apoptosis and extracellular matrix (ECM) damage. In this study, we investigated the potential of ginsenoside compound K (CK), known for its antidiabetic properties, to mitigate tenocyte apoptosis, inflammation, oxidative stress, and the metalloproteinase (MMP) system under hyperglycemic conditions. Our research also aimed to unravel the molecular mechanism underlying the effects of CK. The assessment of apoptosis involved observing intracellular chromatin condensation and measuring caspase 3 activity. To gauge oxidative stress, we examined cellular ROS levels and hydrogen peroxide and malondialdehyde concentrations. Western blotting was employed to determine the expression of various proteins. Our findings indicate that CK treatment effectively countered high glucose-induced apoptosis, inflammation, and oxidative stress in cultured tenocytes. Furthermore, CK normalized the expression of MMP-9, MMP-13, and TIMP-1. Notably, CK treatment boosted the expression of PPARγ and antioxidant enzymes. We conducted small interfering (si) RNA experiments targeting PPARγ, revealing its role in mediating CK's effects on tendinopathy features in hyperglycemic tenocytes. In conclusion, these in vitro results offer valuable insights into the potential therapeutic role of CK in managing tendinopathy among individuals with diabetes. By addressing crucial aspects of tendinopathy, CK presents itself as a promising avenue for future research and treatment development in this domain.


Asunto(s)
Diabetes Mellitus , Ginsenósidos , Tendinopatía , Humanos , Tenocitos/metabolismo , PPAR gamma/metabolismo , PPAR gamma/farmacología , PPAR gamma/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Matriz Extracelular/metabolismo , Apoptosis , Tendinopatía/tratamiento farmacológico , Tendinopatía/metabolismo , Inflamación/metabolismo
9.
Am J Vet Res ; 84(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714521

RESUMEN

OBJECTIVE: To investigate matrix metalloproteinase (MMP) and their inhibitors tissue inhibitor matrix metalloproteinase (TIMP) gene expression and secretion during equine deep digital flexor tendon (DDFT) tenocyte and macrophage (undifferentiated, proinflammatory, and regulatory) co-culture. SAMPLE: Third passage DDF tenocytes and donor-matched macrophages differentiated from peripheral blood CD14+ monocytes from 5 healthy horses ages 9-11 years, euthanized for reasons unrelated to musculoskeletal conditions. METHODS: Passage 3 DDT tenocyte aggregate cultures were co-cultured with undifferentiated (control), proinflammatory (granulocyte-macrophage colony-stimulating factor; GM-CSF pretreated and lipopolysaccharide + interferon gamma-primed; LPS+IFN-γ) or regulatory (interleukin-4 and interleukin-10-primed; IL-4 + IL-10) macrophages in direct and transwell co-cultures for 72 hours. MMP-1, -2, -3, -9, -13, and TIMP -1, -2 mRNA were measured via real-time Polymerase Chain Reaction (rtPCR). Co-culture media MMP -3, -9, and TIMP -1, -2 concentrations were quantified via ELISA. RESULTS: Direct co-culture of DDF tenocytes with proinflammatory macrophages for 72 hours increased MMP-1, -3, and -13 mRNA levels whereas, MMP-9 mRNA levels decreased. Direct and transwell co-culture with proinflammatory and regulatory macrophages resulted in increased MMP-3 and decreased MMP-9 media concentrations. While direct co-culture with regulatory macrophages significantly increased TIMP-1 mRNA, overall, TIMP mRNA and culture media concentrations were largely unchanged. CLINICAL RELEVANCE: Cell-to-cell contact between DDF tenocytes and macrophages is not essential to induce MMP gene expression and secretion. Co-culture systems offer a viable in vitro platform to screen and evaluate immunomodulatory properties of therapies aimed at improving equine intrasynovial tendon healing.


Asunto(s)
Metaloproteinasa 1 de la Matriz , Metaloproteinasa 9 de la Matriz , Animales , Caballos , Tenocitos/química , Tenocitos/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Macrófagos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Expresión Génica , Fenotipo , Medios de Cultivo/metabolismo , Células Cultivadas
10.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446034

RESUMEN

Tendinopathy, a prevalent overuse injury, lacks effective treatment options, leading to a significant impact on quality of life and socioeconomic burden. Mesenchymal stem/stromal cells (MSCs) and their secretome, including conditioned medium (CM) and extracellular vesicles (EVs), have shown promise in tissue regeneration and immunomodulation. However, it remains unclear which components of the secretome contribute to their therapeutic effects. This study aimed to compare the efficacy of CM, EVs, and the soluble protein fraction (PF) in treating inflamed tenocytes. CM exhibited the highest protein and particle concentrations, followed by PF and EVs. Inflammation significantly altered gene expression in tenocytes, with CM showing the most distinct separation from the inflamed control group. Treatment with CM resulted in the most significant differential gene expression, with both upregulated and downregulated genes related to inflammation and tissue regeneration. EV treatment also demonstrated a therapeutic effect, albeit to a lesser extent. These findings suggest that CM holds superior therapeutic efficacy compared with its EV fraction alone, emphasizing the importance of the complete secretome in tendon injury treatment.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Tenocitos/metabolismo , Calidad de Vida , Vesículas Extracelulares/metabolismo , Inflamación/metabolismo , Proteínas/metabolismo , Células Madre Mesenquimatosas/metabolismo
11.
J Orthop Res ; 41(10): 2195-2204, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37132159

RESUMEN

Tendinopathy is one of the most common musculoskeletal disorders with significant repercussions on quality of life and sport activities. Physical exercise (PE) is considered the first-line approach to treat tendinopathy due renowned mechanobiological effects on tenocytes. Irisin, a recently identified myokine released during PE, has been recognized for several beneficial effects towards muscle, cartilage, bone, and intervertebral disc tissues. The aim of this study was to evaluate the effects of irisin on human primary tenocytes (hTCs) in vitro. Human tendons were harvested from specimens of patients undergoing anterior cruciate ligament reconstruction (n = 4). After isolation and expansion, hTCs were treated with RPMI medium (negative control), interleukin (IL)-1ß or tumor necrosis factor-α (TNF-α) (positive controls; 10 ng/mL), irisin (5, 10, 25 ng/mL), IL-1ß or TNF-α pretreatment and subsequent co-treatment with irisin, pretreatment with irisin and subsequent co-treatment with IL-1ß or TNF-α. hTC metabolic activity, proliferation, and nitrite production were evaluated. Detection of unphosphorylated and phosphorylated p38 and ERK was performed. Tissue samples were analyzed by histology and immunohistochemistry to evaluate irisin αVß5 receptor expression. Irisin significantly increased hTC proliferation and metabolic activity, while reducing the production of nitrites both before and after the addition of IL-1ß and TNF-α. Interestingly, irisin reduced p-p38 and pERK levels in inflamed hTCs. The αVß5 receptor was uniformly expressed on hTC plasma membranes, supporting the potential binding of irisin. This is the first study reporting the capacity of irisin to target hTCs and modulating their response to inflammatory stresses, possibly orchestrating a biological crosstalk between the muscle and tendon.


Asunto(s)
Fibronectinas , Tendinopatía , Humanos , Fibronectinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Tenocitos/metabolismo , Calidad de Vida , Tendones/patología , Inflamación/metabolismo , Tendinopatía/metabolismo , Músculos/patología
12.
J Orthop Res ; 41(10): 2163-2174, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37143206

RESUMEN

Transforming growth factor-beta (TGF-ß1) induces plasminogen activator inhibitor 1 (PAI-1) to effect fibrotic pathologies in several organs including tendon. Recent data implicated PAI-1 with inhibition of phosphatase and tensin homolog (PTEN) suggesting that PAI-1-induced adhesions involves phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) signaling. Ergo, we investigated effects of TGF-ß1, PAI-1, and mTOR signaling crosstalk on myofibroblast activation, senescence, and proliferation in primary flexor tenocytes from wild-type (WT) and PAI-1 knockout (KO) mice. PAI-1 deletion blunted TGF-ß1-induced myofibroblast activation in murine flexor tenocytes and increased the gene expression of Mmp-2 to confer protective effects against fibrosis. While TGF-ß1 significantly reduced phosphorylation of PTEN in WT cells, PAI-1 deletion rescued the activation of PTEN. Despite that, there were no differences in TGF-ß1-induced activation of mTOR signaling (AKT, 4EBP1, and P70S6K) in WT or KO tenocytes. Phenotypic changes in distinct populations of WT or KO tenocytes exhibiting high or low mTOR activity were then examined. TGF-ß1 increased alpha-smooth muscle actin abundance in WT cells exhibiting high mTOR activity, but this increase was blunted in KO cells exhibiting high 4EBP1 activity but not in cells exhibiting high S6 activity. DNA damage (γH2AX) was increased with TGF-ß1 treatment in WT tenocytes but was blunted in KO cells exhibiting high mTOR activity. Increased mTOR activity enhanced proliferation (Ki67) in both WT and KO tenocytes. These findings point to a complex nexus of TGF-ß1, PAI-1, and mTOR signaling in regulating proliferation, myofibroblast differentiation, and senescence in tenocytes, which could define therapeutic targets for chronic tendon adhesions and other fibrotic pathologies.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Mamíferos/metabolismo , Miofibroblastos , Fosfatidilinositol 3-Quinasas , Tenocitos/metabolismo , Serina-Treonina Quinasas TOR , Factor de Crecimiento Transformador beta1/metabolismo
13.
Biochem Biophys Res Commun ; 663: 25-31, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37116394

RESUMEN

Tendon overuse injuries are common, but the processes that govern tendon response to mechanical load are not fully understood. A series of experiments of in vitro and in vivo experiments was devised to study to the relationship between mechanical stimuli and the matricellular protein Cellular Communication Network Factor 1 (CCN1) in tenocytes and tendons. First, human and murine tenocytes were subjected to cyclic uniaxial loading in order to evaluate changes in CCN1 gene expression as a response to mechanical stimuli. Then, baseline Ccn1 gene expression in different murine tendons (Achilles, patellar, forearm, and tail) was examined. Finally, changes in Ccn1 expression after in vivo unloading experiments were examined. It was found that CCN1 expression significantly increased in both human and murine tenocytes at 5 and 10% cyclical uniaxial strain, while 2.5% strain did not have any effect on CCN1 expression. At baseline, the Achilles, patellar, and forearm tendons had higher expression levels of Ccn1 as compared to tail tendons. Twenty-four hours of immobilization of the hind-limb resulted in a significant decrease in Ccn1 expression in both the Achilles and patellar tendons. In summary, CCN1 expression is up-regulated in tenocytes subjected to mechanical load and down-regulated by loss of mechanical load in tendons. These results show that CCN1 expression in tendons is at least partially regulated by mechanical stimuli.


Asunto(s)
Tendón Calcáneo , Traumatismos de los Tendones , Ratones , Humanos , Animales , Tendón Calcáneo/metabolismo , Traumatismos de los Tendones/metabolismo , Tenocitos/metabolismo , Rótula , Estrés Mecánico
14.
J Biochem ; 174(1): 71-80, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36921293

RESUMEN

High monosaccharide levels are intimately associated with diabetes and impact tendon cells through inflammation and impairment in metabolic homeostasis. Experiments were designed to understand the responses elicited by cultured tenocytes under monosaccharide stress induced by hyperglycemia and hyperfructosemia. We simulated hyperglycemia and hyperfructosemia in vitro by treating tenocytes with media containing sublethal concentrations of glucose and fructose, respectively. Exposure of tenocytes to high glucose and high fructose altered the levels of IL-1ß, IL-2, IL-6, IL10 and IL-17A. AMPK expression was increased in high-glucose and decreased in high-fructose groups. High fructose increased the level of IRS-1 compared with the control. Increased mitochondrial superoxide levels and compromised mitochondrial membrane integrity were exhibited by both the groups. The findings from the network analysis revealed many altered genes that are related to pathways for enzyme-linked receptor protein signaling, positive regulation of metabolic processes, transmembrane receptor tyrosine kinase pathway, insulin receptor signaling and regulation of cytokine production. Overall, the data suggest that the tenocytes under high monosaccharide levels exhibit survival responses by altering the expression status of cytokines and metabolic mediators that are involved in the underlying pathogenesis of tendinopathy.


Asunto(s)
Hiperglucemia , Tenocitos , Humanos , Tenocitos/metabolismo , Tenocitos/patología , Fructosa/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/patología , Glucosa/metabolismo , Monosacáridos/metabolismo
15.
Sci Rep ; 13(1): 1566, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709227

RESUMEN

Primary tenocytes rapidly undergo senescence and a phenotypic drift upon in vitro monolayer culture, which limits tendon research. The Ink4a/Arf locus encodes the proteins p16Ink4a/Arf and p14ARF (p19ARF in mice) that regulate cell cycle progression and senescence. We here established an immortalized cell line using tenocytes isolated from Ink4a/Arf deficient mice (Ink4a/Arf-/-). These cells were investigated at three distinct time points, at low (2-5), intermediate (14-17) and high (35-44) passages. Wild-type cells at low passage (2-5) served as controls. Ink4a/Arf-/- tenocytes at all stages were comparable to wild-type cells regarding morphology, expression of tenogeneic genes (collagen type 1, 3 and 5, Scleraxis, Tenomodulin and Tenascin-C), and surface markers (CD29, CD44 and CD105) and form 3D tendon-like structures. Importantly, Ink4a/Arf-/- tenocytes maintained their phenotypic features and proliferation potential in culture for more than 40 passages and also following freeze-thaw cycles. In contrast, wild-type tenocytes underwent senescence starting in passage 6. These data define Ink4a/Arf-/- tenocytes as novel tool for in vitro tendon research and as valuable in vitro alternative to animal experiments.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Tenocitos , Animales , Ratones , Tenocitos/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteína p14ARF Supresora de Tumor/genética , Tendones/metabolismo , Línea Celular
16.
Cell Tissue Res ; 391(3): 523-544, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36543895

RESUMEN

Tendon injuries occur commonly in both human and equine athletes, and poor tendon regeneration leads to functionally deficient scar tissue and an increased frequency of re-injury. Despite evidence suggesting inadequate resolution of inflammation leads to fibrotic healing, our understanding of the inflammatory pathways implicated in tendinopathy remains poorly understood, meaning successful targeted treatments are lacking. Here, we demonstrate IL-1ß, TNFα and IFN-γ work synergistically to induce greater detrimental consequences for equine tenocytes than when used individually. This includes altering tendon associated and matrix metalloproteinase gene expression and impairing the cells' ability to contract a 3-D collagen gel, a culture technique which more closely resembles the in vivo environment. Moreover, these adverse effects cannot be rescued by direct suppression of IL-1ß using IL-1RA or factors produced by BM-MSCs. Furthermore, we provide evidence that NF-κB, but not JNK, P38 MAPK or STAT 1, is translocated to the nucleus and able to bind to DNA in tenocytes following TNFα and IL-1ß stimulation, suggesting this signalling cascade may be responsible for the adverse downstream consequences of these inflammatory cytokines. We suggest a superior approach for treatment of tendinopathy may therefore be to target specific signalling pathways such as NF-κB.


Asunto(s)
Células Madre Mesenquimatosas , Tendinopatía , Humanos , Animales , Caballos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Interferón gamma/metabolismo , Tenocitos/metabolismo , Tendinopatía/metabolismo , Células Cultivadas
17.
Arch Biochem Biophys ; 734: 109486, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36513131

RESUMEN

Tenomodulin (Tnmd) is a type II transmembrane glycoprotein that regulates tendon development and maturation. Our previous study indicated that mechanical stretch could induce Tnmd expression to promote tenocyte migration, associated with reinforcement of fibrous actin (F-actin) stress fibers and chromatin decondensation. However, the detailed molecular mechanisms of this processes are far from clear. Activation of mitogen-activated protein kinase (MAPK) signaling occurs in response to various extracellular stimuli and controls a large number of fundamental cellular processes. The present study we investigated the influence of MAPK signaling on mechanical stretch-induced Tnmd expression and its action way. Expression and activities of extracellular signal-related kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinases (JNK) and p38 MAPK (p38) were determined by Western blot. Cell migration was detected by Transwell assay. Immunofluorescence staining was used to detect F-actin stress fibers. Nuclear chromatin decondensation was detected by in situ DNaseI sensitivity assay. It was found that mechanical stretch promoted Tnmd expression by activating ERK1/2, JNK and p38 signaling. The inhibition of the ERK1/2, JNK or p38 repressed mechanical stretch-promoted tenocyte migration and mechanical stretch-induced reinforcement of F-actin stress fibers. However, only ERK1/2 and p38 inhibitor could repress mechanical stretch-induced chromatin decondensation, and the JNK inhibitor had no significant effect. Moreover, latrunculin (Lat A), the most widely used reagent to depolymerize actin filaments, could inhibit the stretch-induced chromatin decondensation. Taken together, our findings elucidated a molecular pathway by which a mechanical signal is transduced via activation of MAPK signaling to influence reinforcement of F-actin stress fibers and chromatin decondensation, which could further lead Tnmd expression to promote tenocyte migration.


Asunto(s)
Actinas , Tenocitos , Actinas/metabolismo , Células Cultivadas , Cromatina , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal/fisiología , Estrés Mecánico , Tenocitos/metabolismo , Animales , Ratas
18.
Cytokine ; 162: 156090, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481477

RESUMEN

BACKGROUND: Rotator cuff Tear (RCT) causes a lot of inconvenience for patients. In most cases, RCT injury does not heal back to bone after repair, and there is a high chance of retearing. Therefore, there is a need to explore more effective targeted therapies. Bone mesenchymal stem cell-derived exosome (BMSCs-Exo) has been proved to be beneficial to the proliferation of tendon cells, but its specific mechanism remains to be further explored. METHODS: BMSCs-Exo was isolated and identified by detecting the specific markers using flow cytometry and western blot assays. qRT-PCR and western blot were utilized to determine the gene or protein expressions, respectively. Cell proliferation, and migration in tenocytes were measured by CCK8, EdU and transwell assays. The interaction between miR-29a and FABP3 was analyzed using dual-luciferase reporter assay. RESULTS: Our findings demonstrated that miR-29a was expressed in BMSCs-Exo and could be significantly enriched after TGF-ß1 treatment. Moreover, TGF-ß1-modified BMSCs-Exo co-cultured could promote the proliferation, migration and fibrosis of tenocytes by carrying miR-29a. Upon miR-29a was reduced in BMSCs-Exo, the regulatory roles of BMSCs-Exo on tenocytes were reversed. Mechanistically, miR-29a negatively regulated FABP3 via interaction with its 3'-UTR. Enforced expression of FABP3 could reverse the modulation of exosomal miR-29a in tenocytes. CONCLUSION: Exosomal miR-29a derived from TGF-ß1-modified BMSCs facilitated the proliferation, migration and fibrosis of tenocytes through targeting FABP3.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Humanos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Tenocitos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular/genética , Proteína 3 de Unión a Ácidos Grasos/metabolismo
19.
Rheumatology (Oxford) ; 62(3): 1343-1349, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35809060

RESUMEN

OBJECTIVES: Basic calcium phosphate (BCP) crystals contribute to several syndromes associated with tendon disease, including acute calcific tendinitis and Milwaukee shoulder syndrome. Interactions between BCP crystals and tenocytes (tendon cells) may contribute to these clinical syndromes. This study aimed to determine the direct effects of BCP crystals on tenocyte function and viability. METHODS: In vitro assays were used to assess changes in human tenocytes cultured with BCP crystals. Real-time PCR was used to determine changes in the expression of tendon-related genes and extracellular matrix remodelling enzymes (MMPs; a disintegrin and metalloproteases, ADAMTS; and tissue inhibitor of metalloproteinases, TIMPs). ELISA was used to measure protein concentrations in tenocyte supernatants. MTT and alamarBlue™ assays were used to determine changes in cell viability. RESULTS: BCP crystals upregulated tenocyte gene expression of MMP-1, MMP-3, ADAMTS-4 and TIMP-1 after 24 h. Time-course experiments showed expression peaked at 8 h for TIMP-1 and 48 h for MMP-1 and ADAMTS-4. Cyclooxygenase (COX)-1 gene expression was upregulated after 48 h. Tenocytes did not alter expression of scleraxis and tendon collagens, and expression of pro-inflammatory cytokines was not induced with BCP crystals. BCP crystals increased tenocyte release of prostaglandin E2 (PGE2) and MMP-1 protein after 24 h. However, neither COX-1 inhibition nor COX-2 inhibition led to consistent change in BCP crystal-induced tenocyte gene expression of extracellular matrix remodelling enzymes. BCP crystals had no effect on tenocyte viability. CONCLUSION: BCP crystals induce extracellular matrix remodelling enzymes, but not inflammatory cytokines, in tenocytes.


Asunto(s)
Metaloproteinasa 1 de la Matriz , Inhibidor Tisular de Metaloproteinasa-1 , Humanos , Tenocitos/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Fosfatos de Calcio/metabolismo
20.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430562

RESUMEN

We generated a novel tetracycline-inducible transgenic mouse line with the tendon-specific expression of a series of tendon-critical transcription factors. Primary tenocytes derived from this mouse line consistently expressed green fluorescent protein reporter transcription factors in response to doxycycline. The tenocytes maintained their tendon cell properties for a longer time after the transient induction in the absence of growth factors and mechanical stress. Four key transcription factors for tendon development and the green fluorescent protein reporter were linked with different viral 2A self-cleaving peptides. They were expressed under the control of the tet-responsive element. In combination with the expression of BFP, which reports on the tendon-specific collagen I, and mScarlet, which reports on the tendon-specific transcription factor Scleraxis (Scx), we observed the more extended maintenance of the tendon cell identity of in vitro cultured tendon cells and Achilles tendon explants. This means that the Scleraxis bHLH transcription factor (Scx), mohawk homeobox (Mkx), early growth response 1 (Egr1) and early growth response 2 (Egr2) contributed to the maintenance of tenocytes' identity in vitro, providing a new model for studying extracellular matrix alterations and identifying alternative biomaterials in vitro.


Asunto(s)
Tenocitos , Factores de Transcripción , Animales , Ratones , Tendón Calcáneo/metabolismo , Proteínas Fluorescentes Verdes , Ratones Transgénicos , Estrés Mecánico , Tenocitos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA